Kruss Tensiometer K100 Manual Meat

An outcome evaluation of a food bank program. This report presents the results of the 2016 formative evaluation of the Canada Accelerator and Incubator Program (CAIP). CAIP is a contribution program initiated in 2014 with a budget of $100 million and a horizon of five years. Do exist, they are more commonly found at the output and outcome level and only rarely at the impact level.

Tensiometry Processor Tensiometer K100 / K100C Due to their high measuring precision. • Manual or automatic positioning of the solid. Will remain in the oil phase (upper right hand diagram in Figure 2-8) and the. Standard Kruss K100 tensiometer apparatus with it. Capillas, C., Novel applications of oil-structuring methods as a strategy to improve the fat content of meat.

Glycolipids are one of the major classes of biosurfactants in which the rhamnolipids are best studied. The present work investigates the optimization of inoculum age and batch time for maximizing the yield of rhamnolipid from Pseudomonas aeruginosa (MTCC 2453). The yield and titer of rhamnolipids were maximum in the fermentation batch with an inoculum age of 24 hr. Batch time studies were performed on biomass production, rhamnolipid production, and sunflower oil utilization. The maximum yield of rhamnolipid was achieved at 96 hr when the culture cells were in the late exponential/early stationary phase. At optimum substrate concentration, maximum yield of 10.8 g/L was achieved. Further, downstream processing of crude rhamnolipid from broth using organic solvent extraction and subsequent purification using adsorption chromatography was done. In this study, chromatographic method was developed for purification of rhamnolipid by adsorption phenomena with more than 88.7% purity and 86.5% recovery. The present study provides new perspective on concepts involving separation by adsorption. Further antimicrobial properties and surfactant properties were studied for rhamnolipid production.

KEYWORDS: Antimicrobial, chromatography, downstream processing, fermentation, rhamnolipids, surface tension

Abstract The objective of this project was the design of new water-based pressure-sensitive adhesive (PSA) products and coatings engineered for enhanced removal during the processing of recycled fiber. Research included the formulation, characterization, and performance measurements of new screenable coatings, testing of modified paper and board substrates and the design of test methods to characterize the inhibition of adhesive and coating fragmentation and relative removal efficiencies of developed formulations. This project was operated under the requirements that included commercially viable approaches be the focus, that findings be published in the open literature and that new strategies could not require changes in the methods and equipment used to produce PSA and PS labels or in the recycling process. The industrial partners benefited through the building of expertise in their company that they would not, and likely could not, have pursued if it had not been for the partnership. Results of research on water-based PSAs clearly identifies which PSA and paper facestock properties govern the fragmentation of the adhesive and provide multiple strategies for making (pressure-sensitive) PS labels for which the PSA is removed at very high efficiencies from recycling operations.

The application of these results has led to the identification of several commercial products in Franklin International’s (industrial partner) product line that are recycling compatible. Several new formulations were also designed and are currently being scaled-up. Work on recycling compatible barrier coatings for corrugated containers examined the reinforcement of coatings using a small amount of exfoliated organically modified montmorillonite (OMMT). These OMMT/paraffin wax nanocomposites demonstrated significantly improved mechanical properties. Paraffin waxes containing clay were found to have significantly higher Young’s moduli and yield stress relative to the wax matrix, but the most impressive finding was the impact of the clay on the elongation at break; a nearly 400% increase was observed for a clay concentration of 0.5 wt.%. These coatings also demonstrate a number of other property enhancements, which make them a good candidate for continued research. Another approach explored in this research was the use of structured and self-cleaning surfaces.

If the amount of coating utilized can be significantly reduced, the environmental impact is diminished. An industrial research area of high activity in recent years has been the development of pressure sensitive adhesive (PSA) products that do not interfere with the processing of post-consumer waste. The problem of PSA contamination is arguably the most important technical challenge in expanding the use of recycled fiber. The presence of PSAs in recovered paper creates problems that reduce the efficiency of recycling and papermaking operations and diminish product quality. The widespread use of PSAs engineered to avoid these problems, often referred to as environmentally benign PSAs, could greatly increase the commercial viability of utilizing secondary fiber. Much of the research efforts in this area have focused on the development of PSAs that are designed for enhanced removal with cleaning equipment currently utilized by recycling plants. Most removal occurs at the pressure screens with the size and shape of residual contaminants in the process being the primary criteria for their separation.

A viable approach for developing environmentally benign PSAs is their reformulation to inhibit fragmentation. The reduction of adhesives to small particles occurs almost exclusively during repulping; a process in which water and mechanical energy are used to swell and reduce paper products to their constituent fiber. Engineering PSA products to promote the formation of larger adhesive particles during repulping will greatly enhance their removal and reduce or eliminate their impact on the recycling process.

I’ve Got A Feeling – 3:38 09. Let It Be – 4:03 07. One After 909 – 2:54 10. Beatles revolver blogspot rar. Maggie Mae – 0:40 08.

The Institute studied the adsorption of cationic pressure-sensitive adhesive (PSA) on wood fiber, and the buildup of PSA in a closed water system during paper recycling; the results are presented. Georgia Tech worked to develop an environmentally friendly polymerization process to synthesize a novel re-dispersible PSA by co-polymerizing an oil-soluble monomer (butyl acrylate) and a cationic monomer MAEPTAC; results are presented. At the University of Georgia at Athens the project focused on the synthesis of water-soluble and easily removable cationic polymer PSAs. The primary objective of this project was to develop an energy efficient, environmentally friendly and low cost process (compared to the current process) for making tackifier dispersions that are used to make pressure-sensitive adhesives. These adhesives are employed in applications such as self-adhesive postage stamps and disposable diapers and are made by combining the tackifier dispersion with a natural or synthetic rubber latex. The current process for tackifier dispersion manufacture begins by melting a (plastic) resin and adding water to it in order to form a water-in-oil emulsion. This is then converted to an oil-in-water emulsion by phase inversion in the presence of continuous stirring.

The resulting emulsion is the tackifier dispersion, but it is not concentrated and the remaining excess water has to be transported and removed. The main barrier that has to be overcome in the development of commercial quality tackifier dispersions is the inability to directly emulsify resin in water due to the very low viscosity of water as compared to the viscosity of the molten resin. In the present research, a number of solutions were proposed to overcome this barrier, and these included use of different mixer types to directly form the emulsion from the molten resin but without going through a phase inversion, the idea of forming a solid resin-in-water suspension having the correct size and size distribution but without melting of the resin, and the development of techniques of making a colloidal powder of the resin that could be dispersed in water just prior to use. Progress was made on each of these approaches, and each was found to be feasible. The most appealing solution, though, is the last one, since it does not require melting of the resin. Also, the powder can be shipped in dry form and then mixed with water in any proportion depending on the needs of the process. This research was conducted at Argonne National Laboratory, and it was determined the new process uses 78% less energy than the conventional process.

Additional benefits of the new process are that it can process resins that cannot presently be processed without using solvents and that it can result in new products made with mixed resins.